An Adaptive Simplex Cut-Cell Method for Discontinuous Galerkin Discretizations of the Navier-Stokes Equations
نویسندگان
چکیده
A cut-cell adaptive method is presented for high-order discontinuous Galerkin discretizations in two and three dimensions. The computational mesh is constructed by cutting a curved geometry out of a simplex background mesh that does not conform to the geometry boundary. The geometry is represented with cubic splines in two dimensions and with a tesselation of quadratic patches in three dimensions. High-order integration rules are derived for the arbitrarily-shaped areas and volumes that result from the cutting. These rules take the form of quadrature-like points and weights that are calculated in a pre-processing step. Accuracy of the cut-cell method is verified in both two and three dimensions by comparison to boundary-conforming cases. The cut-cell method is also tested in the context of output-based adaptation, in which an adjoint problem is solved to estimate the error in an engineering output. Two-dimensional adaptive results for the compressible Navier-Stokes equations illustrate automated anisotropic adaptation made possible by triangular cut-cell meshing. In three dimensions, adaptive results for the compressible Euler equations using isotropic refinement demonstrate the feasibility of automated meshing with tetrahedral cut cells and a curved geometry representation. In addition, both the two and three-dimensional results indicate that, for the cases tested, p = 2 and p = 3 solution approximation achieves the user-prescribed error tolerance more efficiently compared to p = 1 and p = 0.
منابع مشابه
A Simplex Cut-Cell Adaptive Method for High-Order Discretizations of the Compressible Navier-Stokes Equations
While an indispensable tool in analysis and design applications, Computational Fluid Dynamics (CFD) is still plagued by insufficient automation and robustness in the geometryto-solution process. This thesis presents two ideas for improving automation and robustness in CFD: output-based mesh adaptation for high-order discretizations and simplex, cut-cell mesh generation. First, output-based mesh...
متن کاملA triangular cut-cell adaptive method for high-order discretizations of the compressible Navier-Stokes equations
This paper presents a mesh adaptation method for higher-order (p > 1) discontinuous Galerkin (DG) discretizations of the two-dimensional, compressible Navier–Stokes equations. A key feature of this method is a cut-cell meshing technique, in which the triangles are not required to conform to the boundary. This approach permits anisotropic adaptation without the difficulty of constructing meshes ...
متن کاملOutput-based Adaptive Meshing Using Triangular Cut Cells
This report presents a mesh adaptation method for higher-order (p > 1) discontinuous Galerkin (DG) discretizations of the two-dimensional, compressible Navier-Stokes equations. The method uses a mesh of triangular elements that are not required to conform to the boundary. This triangular, cut-cell approach permits anisotropic adaptation without the difficulty of constructing meshes that conform...
متن کاملError Estimation and Adaptation in Hybridized Discontinous Galerkin Methods
This paper presents an output-based error estimation and adaptation strategy for hybridized discontinuous Galerkin discretizations of firstand second-order systems of conservation laws. A discrete adjoint solution is obtained by a Schurcomplement solver similar to that used in the primal problem. An error estimate is obtained by computing the adjoint on an enriched solution space that consists ...
متن کاملDomain Decomposition for Discontinuous Galerkin Method with Application to Stokes Flow
We report on recent results related to domain decomposition methods based on the Discontinuous Galerkin discretizations of Stokes equations. We analyze the efficiency of a block nonoverlapping Schwarz preconditioner based on the approach by Feng and Karakashian [2001]. We also prove the inf-sup stability of a substructuring method.
متن کامل